ポリイミド薄膜の電気特性の膜厚依存性

Effect of Film Thickness on Electrical Properties of Polyimide Thin Films

梁涛植田穰 Tao Liang Yutaka Makita

Dielectric constant and conduction current of thin/ultrathin polyimides films on substrates with thickness of $80 \sim 2000$ nm were measured by using a small electrode system. Polyimides used in this study were poly(diphenylmethane-2, 3, 5-tricarboxycyclopentyl aceticimide, TCA-DDM) and poly(pyromellitic dianhydride oxydianiline, PMDA-ODA). With decreasing film thickness, the dielectric constant decreased and the leakage current increased. Using the IR reflection absorption spectroscopy, we found that the polyimide chains were oriented parallel to the electrodes. The dependence of the dielectric constants on film thickness was explained by the orientation of polymer chains.

1 はじめに

近年、ボリマー薄膜(膜厚<1µm)/超薄膜材料(膜厚< 100nm)は光・電子材料分野で広く使用されるようになり、 その電気特性について多大な関心が集まっている¹⁾。特に ポリイミドは優れた耐熱性と電気絶縁性を有し、LSIの層 間絶縁膜などの用途で幅広く使用されている。層間絶縁 膜では低誘電率と高抵抗率が要求されるため、ポリイミド 薄膜の電気特性を正確に測定評価することは重要な研究 課題となっている。

絶縁材料の電気特性を測定する際、導電性金属電極 の作製が必要である。薄膜の場合には、膜の強度が不 充分で基板から剥がすことが不可能な場合が多く、 ASTM、JIS規格で規定された自立フィルムの電気特性 測定法を直接応用することはできない。

一方、ガラス転移温度などの薄膜の物性がバルク材料と 大きく異なることが近年の研究で明らかにされつつある²⁻⁵⁾。 また、1µm以下のポリマー薄膜の電気特性がバルク材料 と異なることが報告されている^{1.6)}。しかし、薄膜/超薄膜 の電気特性評価には様々な技術的困難があるため、現在 でもポリマー薄膜の電気特性をそのバルク材料の電気特 性で代用する場合がほとんどであり、ポリマー薄膜の電気 特性を直接高精度に評価する方法の開発が望まれている。

木村慎一

Shin-ichi Kimura

本研究では、基板上ポリマー薄膜の電気特性測定法を 提案し、膜厚80nm~2000nmのポリイミド薄膜の誘電率と リーク電流を測定した。また、薄膜試料のFI-IR測定に基 づき、ポリマー薄膜の電気特性がポリマー分子鎖の配向と 関連することを明らかにした。

2 実験

100nm以下の超薄膜の電気特性を測定するためには、 幾つかの難問を解決しなければならない。

(1)導電性であり、かつ、平滑性の良い基板:通常の研 磨金属基板は表面粗さが約20nm~50nmであり、こ のような粗い基板上に100nm以下の超薄膜を均一に成 膜するのは困難である。市販の半導体シリコン(Si)基 板は表面平坦性が良いが(表面粗さが数nm以下)、 導電性が不足している。種々の基板を検討した結 果、ヒ素(As)ドープSi基板が表面平坦性と導電性を 両方満足できる基板であること、及び、後述するように 膜厚測定を高精度に行えることを見出した(表面粗さが 数nm以下、導電率10³S以上)。表1に検討した基板 の基本特性をまとめる。

Substrates	Si	Cu	Au	Pt	As doped Si
Flatness	0	×			0
Conductivity	×	0	0	0	0
Accuracy of film thickness by ellipsometry	0	×			0

Table 1 Comparison of substrates used for electrical measurement of thin films.

 \bigcirc : Good \triangle : Not Good \times : Bad

- (2)ピンホール問題:膜を貫通するピンホール(欠陥)は膜 厚の減少によって急増する"。最も有効なピンホール対 策の一つは電極の面積を小さくすることである。また、 スピンコートによる成膜の場合には2度塗り法も有効な方 法である。本研究では面積0.2mm²以下のドット電極 を使用してポリイミド薄膜の電気特性を測定した。ドット 電極の面積は光学顕微鏡像をコンピュータ画像処理す ることにより測定した。
- (3) 正確な膜厚測定法:誘電率、導電率などの電気特性 は単位膜厚あたりのものであるため、試料の膜厚を正 確に測定することも重要である。我々は触針法、エリ プソメトリー法などの膜厚測定法を比較した結果、As ドープSi基板を用いる場合、精度的にエリプソメトリー 法が最も良いと結論した。

2.1 電気測定用試料の作製

図1に本報告で用いたTCA-DDMの化学構造を示す。 TCA-DDMは配向膜用途の代表的な可溶性ポリイミドで あり、重量平均分子量62,000のものを用いた。TCA-DDMの溶液をAsドープSi基板上に塗布し、スピンコート 法で成膜した。スピンコートの前に1%HF水溶液でAs ドープSi基板を洗浄し、Si基板表面の酸化物を取り除いた。 その後、マスクを使用した真空蒸着法で直径0.2mm~

PMDA-ODA

Fig. 1 Chemical structure of TCA-DDM and PMDA-ODA polyimides. 0.4mmのAl電極を作製した。図2に(AsドープSi基板/ポ リイミド薄膜/Al)サンドイッチ型試料の構造を示す。また、電 気測定法の条件検討を行うため、電気特性が広範に研究 されているPMDA-ODAポリイミドも使用した(図1参照)。

一方、ポリイミドの分子配向性を評価するため、IR-RAS法(IR Reflection Absorption Spectroscopy)を使 用した。RAS法は反射赤外測定法の一種であり、金属基 板上の塗膜の反射スペクトルを測定することにより、高感 度に薄膜試料のIR測定ができる特徴を有する。RAS測定 では膜面に垂直の偏光を用い、入射角度は76°とした。

2.2 誘電率測定

ドット電極への電圧印加を確実に行うため、特殊なプ ローブを自作し、LCRメータ(HP社製4284A型)に取り付 け、ポリイミド薄膜試料の誘電率を測定した。図2に誘電 率測定の模式図を示す。誘電率測定はすべて大気中に おいて室温で行ない、下式から誘電率を求めた。

$$\varepsilon = \frac{(C_x - C_r)t}{\varepsilon_0 \pi d^2/4} \tag{1}$$

ここで、Gは実測の電気容量、Gは電極形状と膜厚に 依存する校正電気容量、tは膜厚、dはドット電極の直 径、 ε_0 は真空の誘電率(ε_0 =8.85×10⁴C/m)である。Gの 計算方法はASTM D150に準じた。

2.3 電流-時間特性と電流-電圧特性測定

以上に示した誘電率測定用プローブをエレクトロメータ (Keithley社製6517型)に取り付け、ドット電極の構造を持 つポリイミド薄膜試料の電流-時間特性と電流-電圧特性 を測定した。電流-時間特性を測定する時、印加電界強

Fig. 2 Diagram of measurement system of dielectric constant for polymer thin films.

度Eは0.2MV/m(電界強度=印加電圧/膜厚)となるように 設定した。用いたエレクトロメータの電流測定応答時間は 8ms、測定スピードは115回/秒である。電流-時間特性と 電流-電圧特性測定はすべて大気中において室温で行っ た。

3 結果と考察

3.1 基板の影響

通常の半導体Si基板の表面粗さは数nm以下であり、 かつ、スピンコート時の濡れ性が良く、薄膜電気特性の測 定に適するが、導電性が不充分である(約10⁻³S)。半導 体Si基板上に作製したポリイミド薄膜サンドイッチ型試料の 抵抗と容量は約100Ω×100pFであり、RC直列回路と見な した時の緩和時間(抵抗×容量)は10⁻⁸sとなり、高周波数 領域での誘電率測定が困難になると考えられる。代表的 なポリイミドであるPMDA-ODAを用いてSi基板の影響を調 べた。図3に、自立PMDA-ODAフィルム(膜厚=51µm)、 半導体Si基板上のPMDA-ODAフィルム(膜厚=2.3µm)と AsドープSi基板上のPMDA-ODAフィルム(膜厚=2.3µm) の誘電率の周波数依存性を比較した結果を示す。半導 体Si基板上のPMDA-ODAフィルム試料は高周波数領域 で急激な誘電率低下が見られ、これはSi基板の導電性が 悪いことによるものと推定される。AsドープSi基板の抵抗は 約0.1Qである試料のRC直列回路の緩和時間は約10⁻¹¹s である。そのため、AsドープSi基板上の測定試料は1MHz の測定範囲まで51µmの自立膜フィルムとほぼ同じ、平坦 な周波数依存性を示したと考えられる。

3.2 誘電率の膜厚依存性について

図4にTCA-DDMフィルムの誘電率の膜厚依存性を示 す(膜厚=78,158,441,1098,1826,2710nm)。周波数の

Fig. 3 Dielectric constants of PMDA-ODA film on wafers and that of free standing film.

増加と共に試料の誘電率が低下する現象はTCA-DDMの 分子鎖の配向分極によると考えられる。試料の膜厚が 1000nm以上の場合には誘電率への膜厚の影響はほぼ無 視できる。しかし、試料の膜厚が1000nm未満の場合には 誘電率が膜厚の減少と共に小さくなった。ポリマー薄膜の 誘電率が膜厚によって変化するという報告は幾つかなされ ており²⁻⁵、次の二つの因子が関係していると考えられる。 1)ポリマー分子鎖が基板に沿って配向する⁸⁻¹¹、2)ポリマー 分子鎖が基板あるいは電極と相互作用する²⁰。

文献では、膜厚が100nm未満の時にポリマー分子鎖は 基板に沿って配向する傾向が強いことが指摘されてい る⁸⁻¹¹⁾。コンピュータシミュレーションからは、基板の界面付 近においてポリマー分子鎖が2次元の平面配向に近く、基 板界面から離れると徐々にバルク材料の3次元の立体配向 をとるようになることが報告されている⁸⁻⁹⁾。

図5にTCA-DDMフィルムのIR-RASスペクトルを示す。 1690cm⁻¹の吸収はC=Oの非対称伸縮振動、1510cm⁻¹の 吸収はパラ位に置換基を持つベンゼン環のC-C骨格振動、 1360cm⁻¹の吸収はC-N伸縮振動である¹²⁰。RAS測定時の 電場の偏光方向は膜面方向に垂直であるため、IR吸収 基が膜面方向に平行であるほどその吸収が弱い。C-N伸 縮振動(1360cm⁻¹)とベンゼン環骨格振動(1510cm⁻¹)の吸 収ピークは膜厚の減少とともに弱くなり、C-N結合とベンゼン 環が膜面方向に平行に配向する傾向を示している。一 方、C=O伸縮振動(1690cm⁻¹)の吸収ピークは膜厚の減 少とともに強くなり、これはC=O基が膜面方向に垂直に配 向することを示唆している。

図6にTCA-DDM分子鎖の立体構造を示す。この立体 構造からC-N結合とベンゼン環骨格が分子鎖軸の方向に

Fig. 4 Dependence of dielectric constant for TCA-DDM films on frequency with thickness 78, 158, 441, 1098, 1826 and 2710nm at room temperature.

Fig. 5 Infrared-absorption spectra (RAS) for TCA-DDM films with thickness 78, 441 and 1826nm.

並び、C=O結合は平均的に分子鎖軸の方向と直交することが分かる。この立体構造とIR-RAS測定結果から、基板近傍においてTCA-DDM分子鎖が基板に沿って配向していると推測できる。

TCA-DDMのような剛直な主鎖を持つポリマーは分子鎖 軸方向の電子分極P_{axia}は分子鎖軸に垂直方向の電子分 極P_{radial}と大きく異なり(図6参照)、MOPACを使用して計算 した結果では、P_{axial}=251 (a.u.)、P_{radial}=181 (a.u.)であった。 誘電率を測定するとき、印加電界の方向は膜厚の方向で ある。TCA-DDM分子鎖が膜面方向に配向すると、P_{radial} の寄与が強くなり、P_{axial}とP_{radial}から合成した膜厚方向の実 効分極率が減少する。膜厚が薄いほど、基板近傍の影 響が強く現れ、分子鎖の配向が顕著になり、膜厚方向の 実効分極率が減少していく。そのため、実測した膜厚方 向の誘電率が膜厚の減少と共に小さくなったと考えられる。

一方、飯田らはPMDA-ODAポリイミドの誘電率が膜厚の減少と共に減少する結果を報告している⁶。その原因に

Fig. 6 Chemical structure and definition of direction of TCA-DDM chain. The average configuration of TCA unit was used when calculating the electronic polarizability of TCA-DDM unit.

Fig. 7 Current-time relaxation for TCA-DDM films with thickness 78, 158, 441, 1098, 1826 and 2710nm at room temperature.

ついては、彼らは界面付近での分子間相互作用によるものと考えている。

3.3 リーク電流の膜厚依存性について

図7にTCA-DDMポリイミドのリーク電流の時間緩和挙 動を示す(膜厚はそれぞれ78,158,441,1098,1826,2710 nm)。リーク電流の時間緩和は式(2)で表わされる。

$$I(t) = \frac{V}{Rs} \exp\left(-\frac{t}{CxRs}\right) \tag{2}$$

ここで、Cxはサンプルの電気容量、Rsは測定系の抵抗、Vは印加電圧、tは時間である。本研究で使用している測定系の時定数(CxRs)は約10秒である。そのため、10秒以前の電流は充電過程の過渡電流で、誘電緩和と無関係であり、10秒以後の電流が誘電緩和と関連すると考えられる。膜厚が1000nm以上の場合にリーク電流緩和曲線は膜厚による変化がほとんどなく、1000nm未満の場合にはリーク電流緩和曲線は膜厚に依存し、リーク電流は

Fig. 8 Current-electric field characteristics for TCA-DDM films with thickness 158, 441, 1098, 1826 and 2710nm.

極端に大きくなった。

薄膜/超薄膜では電極間の距離が近づくため、高電界 印加の状態において金属電極から直接電子を放出する現 象(Schottky効果)が無視できない¹⁵⁾。TCA-DDMポリイミ ドの超薄膜領域でのリーク電流の増大はこのSchottky放 出によると考えられる。

3.4 I-E特性と絶縁破壊の膜厚依存性

図&にTCA-DDMポリイミドのI-E特性を示す(膜厚はそ れぞれ158,441,1098,1826,2710nm)。TCA-DDMのI-E 特性は非線形のパターンを示し、高電界の領域では電流 の増加が緩やかになる傾向が観察された。このようなI-E 特性の非線形パターンは特に吸水性の高いポリマーに良く 見られる現象であるが、原因は明確にされていない¹⁶⁾。

4 結論

本研究では、基板から剥がれないポリマー薄膜の電気 特性評価法を提案し、膜厚80nm~2000nmのTCA-DDM ポリイミド薄膜の誘電率とリーク電流を測定した。100nm以 下の超薄膜領域ではポリイミド薄膜の誘電率とリーク電流 に膜厚依存性が現れた。薄膜試料のFI-IR測定結果に基 づき、ポリマー薄膜の超薄膜領域での膜厚依存性がポリ マー分子鎖の配向と関連することを明らかにした。

謝辞

大阪大学の足立桂一郎教授から測定法と結果の解釈 に関し、多くのアドバイスとコメントを頂き、深く感謝します。

発表紙

Polymer 42, 4867-4872 (2001).

参考文献

- 1) David SS, Martynenko Z. Polymers in Microelectronics, Elesvier Science, p. 158 (1989).
- Despotopoulou AM, Miller RD, Rabolt JF, Frank CW. J Polym Sci, Part B, 34 (2335) 1996.
- Zanten JH, Wallace WE, Wu W. Phys Rev, E53, 2053 (1996).
- Prucker O, Christian S, Bock H, Ruhe J, Frank CW, Knoll W. Macromol Chem Phys, 199, 1435 (1998).
- Benecke C, Schmitt K, Schadt M. Liqiud Crystals, 21, 575 (1996).
- Iida K, Liao C, Huang J, Nakamura S, Sawa G. IEE Japan Trans Electr Insul, DEI-67, 1 (1994).
- 7) Rhodes SJ, Semiconductor Intl, 24, 65 (1981).
- Kumar SK, Vacatello M, Hadziioannou G. J Chem Phys, 89, 4374 (1988).
- 9) Vacatello M, Yoon DY, Laskowoki BC. J Chem Phys, 93, 779 (1990).
- Lin L, Bidsrup SA. J Appl Polym Sci, 49, 1277 (1993).
- Matsunobe T, Nagai N, Kamoto R, Nakagawa Y, Ishida H. J Photopolym Sci Thchnol, 8, 263 (1995).
- Aerle NAJM, Barmentlo M, Hollering RWJ. J Appl Phys, 74, 3111 (1993).
- 13) Beaucage G, Composto R, Stein RS. J Polym Sci, Part B, 31, 319 (1993).
- 14) Keddie JL, Jones RAL, Cory RA. Europhys Lett, 27, 59 (1994).
- 15) Miyoshi Y, Chino K. Jpn J Appl Phys, 6, 181 (1967).
- Nasa S. Polymers for Microelectronics Proc, p. 274 (1993).